Human immunodeficiency virus protease inhibitors induce hyperlipidemia in many patients treated with these drugs. We examined the effects of indinavir on cholesterol and bile acid homeostatic mechanisms in a primary rat hepatocyte (PRH) culture model. In PRH, indinavir up-regulated (2.5-fold) 3-hydroxy-3-methylglutaryl-Coenzyme A reductase mRNA levels 24hr after drug addition. In these same experiments, cholesterol 7alpha-hydroxylase (CYP7A1) mRNA levels, the rate-limiting enzyme in bile acid biosynthesis, was decreased up to 10-fold. Fatty acid synthase mRNA levels were up-regulated more than 3-fold under these conditions. Indinavir did not alter CYP7A1 transcriptional activity, but decreased CYP7A1 mRNA half-life in PRH from 1.5hr to less than 0.5hr. Sterol regulatory element-binding protein-1 (SREBP-1) mature form was increased approximately 6-fold by this drug. Indinavir-induced mRNA changes and SREBP-1 mature protein levels were significantly abated by the addition of cholesterol, solubilized in beta-cyclodextrin, to culture medium. Indinavir markedly decreased endogenous cholesterol esterification and increased cholesterol in intracellular membranes in primary hepatocytes. Indinavir gavaged into intact mice also markedly increased SREBP-1 and SREBP-2 (mature forms) in hepatic nuclei. CYP7A1 mRNA was also decreased approximately 52% in indinavir-treated animals. We propose that indinavir disrupts cellular cholesterol homeostasis by increasing SREBP's and decreasing CYP7A1 mRNA.