The pathophysiology of osteoarthritis

Aging Clin Exp Res. 2003 Oct;15(5):364-72. doi: 10.1007/BF03327357.


Osteoarthritis (OA) is a complex disease whose pathogenesis includes the contribution of biomechanical and metabolic factors which, altering the tissue homeostasis of articular cartilage and subchondral bone, determine the predominance of destructive over productive processes. A key role in the pathophysiology of articular cartilage is played by cell/extra-cellular matrix (ECM) interactions, which are mediated by cell surface integrins. In a physiologic setting, integrins modulate cell/ECM signaling, essential for regulating growth and differentiation and maintaining cartilage homeostasis. During OA, abnormal integrin expression alters cell/ECM signaling and modifies chondrocyte synthesis, with the following imbalance of destructive cytokines over regulatory factors. IL-1, TNF-alpha and other pro-catabolic cytokines activate the enzymatic degradation of cartilage matrix and are not counterbalanced by adequate synthesis of inhibitors. The main enzymes involved in ECM breakdown are metalloproteinases (MMPs), which are sequentially activated by an amplifying cascade. MMP activity is partially inhibited by the tissue inhibitors of MMPs (TIMPs), whose synthesis is low compared with MMP production in OA cartilage. Intriguing is the role of growth factors such as TGF-beta, IFG, BMP, NGF, and others, which do not simply repair the tissue damage induced by catabolic factors, but play an important role in OA pathogenesis.

Publication types

  • Review

MeSH terms

  • Aging*
  • Humans
  • Osteoarthritis / metabolism
  • Osteoarthritis / pathology
  • Osteoarthritis / physiopathology*