Thermodynamics of the molecular and chiral recognition of cycloalkanols and camphor by modified beta-cyclodextrins possessing simple aromatic tethers

J Org Chem. 2004 Jan 9;69(1):173-80. doi: 10.1021/jo035355q.


The complex stability constants (K(S)) and thermodynamic parameters (DeltaG degrees, DeltaH degrees, and TDeltaS degrees ) for 1:1 inclusion complexation of beta-cyclodextrin (beta-CD) derivatives, 6-O-phenyl-beta-CD (2) 6-O-(4-formyl-phenyl)-beta-CD (3), 6-O-(4-nitrophenyl)-beta-CD (4), 6-O-(4-bromophenyl)-beta-CD (5), 6-O-(4-chlorophenyl)]-beta-CD (6), and 6-O-(4-hydroxybenzoyl)-beta-CD (7) with representative guest molecules, cyclic alcohols (cyclopentanol, cyclohexanol, cycloheptanol, cyclooctanol), (+/-)-borneol, and (+/-)-camphor, have been determined by means of titration microcalorimetry in an aqueous phosphate buffer solution (pH = 7.20) at 298.15 K. The results obtained indicate that the introduction to beta-CD of an aromatic ring bearing different substituent groups significantly enhances the molecular binding ability and moderately alters the chiral discrimination ability for the guests examined here, displaying the highest enantioselectivity of up to 4.01 for the inclusion complexation of 6 with (+/-)-camphor. The enhanced molecular/chiral discrimination ability caused by derivatization is attributed solely to increased positive entropy changes due to the expanding hydrophobic interaction and desolvation effects. The binding modes of host-guest interactions derived from ROESY spectroscopy data show that the resulting complex of 4 and (+)-borneol possesses better induced-fit interaction as compared to (-)-borneol, which is responsible for the enhanced molecular/chiral recognition ability.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Alcohols / chemistry*
  • Calorimetry
  • Camphor / chemistry*
  • Magnetic Resonance Spectroscopy
  • Stereoisomerism
  • Thermodynamics


  • Alcohols
  • Camphor