Maternal effects of egg size on emu Dromaius novaehollandiae egg composition and hatchling phenotype

J Exp Biol. 2004 Feb;207(Pt 4):597-606. doi: 10.1242/jeb.00792.


Parental investment in eggs and, consequently, in offspring can profoundly influence the phenotype, survival and ultimately evolutionary fitness of an organism. Avian eggs are excellent model systems to examine maternal allocation of energy translated through egg size variation. We used the natural range in emu Dromaius novaehollandiae egg size, from 400 g to >700 g, to examine the influence of maternal investment in eggs on the morphology and physiology of hatchlings. Female emus provisioned larger eggs with a greater absolute amount of energy, nutrients and water in the yolk and albumen. Variation in maternal investment was reflected in differences in hatchling size, which increased isometrically with egg size. Egg size also influenced the physiology of developing emu embryos, such that late-term embryonic metabolic rate was positively correlated with egg size and embryos developing in larger eggs consumed more yolk during development. Large eggs produced hatchlings that were both heavier (yolk-free wet and dry mass) and structurally larger (tibiotarsus and culmen lengths) than hatchlings emerging from smaller eggs. As with many other precocial birds, larger hatchlings also contained more water, which was reflected in a greater blood volume. However, blood osmolality, hemoglobin content and hematocrit did not vary with hatchling mass. Emu maternal investment in offspring, measured by egg size and composition, is significantly correlated with the morphology and physiology of hatchlings and, in turn, may influence the success of these organisms during the first days of the juvenile stage.

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Dromaiidae / embryology*
  • Dromaiidae / physiology
  • Embryo, Nonmammalian / physiology*
  • Energy Metabolism / physiology*
  • Ovum / cytology*
  • Phenotype*