The identification of agents with antiproliferative activity against endothelial cells has significant value for the treatment of many angiogenesis-dependent pathologies. Herein, we describe the discovery of a series of thalidomide analogues possessing inhibitory effects against both endothelial and prostate cancer cells. More specifically, several analogues exhibited low micromolar to mid-nanomolar potency in the inhibition of human microvascular endothelial cell (HMEC) proliferation, both in the presence and absence of vascular endothelial growth factor (VEGF), with the tetrafluorophthalimido class of compounds demonstrating the greatest potency. Additionally, all the compounds were screened against two different androgen independent prostate cancer cell lines (PC-3 and DU-145). Again, the tetrafluorophthalimido analogues exhibited the greatest effect with GI(50) values in the low micromolar range. Thalidomide was found to demonstrate selective inhibition of androgen receptor positive LNCaP prostate cancer cells. Furthermore, we showed that, as an example, tetrafluorophthalimido analogue 19 was able to completely inhibit the prostate specific antigen (PSA) secretion by the LNCaP cell line, while thalidomide demonstrated a 70% inhibition. We have also demonstrated that a correlation exists between HMEC and prostate cancer cell proliferation for this structural class. Altogether, our study suggests that these analogues may serve as promising leads for the development of agents that target both androgen dependent and independent prostate cancer and blood vessel growth.