Skip to main page content
Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
, 279 (15), 15550-60

Recruitment of the Actin-Binding Protein HIP-55 to the Immunological Synapse Regulates T Cell Receptor Signaling and Endocytosis

Affiliations

Recruitment of the Actin-Binding Protein HIP-55 to the Immunological Synapse Regulates T Cell Receptor Signaling and Endocytosis

Séverine Le Bras et al. J Biol Chem.

Abstract

Actin cytoskeleton dynamics critically regulate T cell activation. We found that the cytoplasmic adaptor HIP-55, a Src/Syk-kinases substrate and member of the drebrin/Abp1 family of actin-binding proteins, localized to the T cell-antigen-presenting cell (APC) contact site in an antigen-dependent manner. Using green fluorescent protein fusion proteins, both Src homology 3 (SH3) and actin binding domains were found necessary for recruitment at the T cell-APC interface. HIP-55 was not implicated in conjugate formation and actin polymerization but regulated distal signaling events through binding and activation of hematopoietic progenitor kinase 1 (HPK1), a germinal center kinase (GCK) family kinase involved in negative signaling in T cells. Using RNA interference and overexpression experiments, the HIP-55-HPK1 complex was found to negatively regulate nuclear factor of activated T cell (NFAT) activation by the T cell antigen receptor. Moreover, we show that HIP-55, which partly co-localized with early endocytic compartments, promoted both basal and ligand-dependent T cell receptor (TCR) down-modulation, resulting in a decreased TCR expression. SH3 and actin-depolymerizing factor homology domains were required for this function. As controls, the expression of CD28 and the glycosylphosphatidylinositol-linked protein CD59 was not affected by HIP-55 overexpression. These results suggest that, in addition to binding to HPK1, HIP-55 might negatively regulate TCR signaling through down-regulation of TCR expression. Our findings show that HIP-55 is a key novel component of the immunological synapse that modulates T cell activation by connecting actin cytoskeleton and TCRs to gene activation and endocytic processes.

Similar articles

See all similar articles

Cited by 27 articles

See all "Cited by" articles

Publication types

MeSH terms

LinkOut - more resources

Feedback