Objective: Articular deposition of monosodium urate monohydrate (MSU) crystals may promote cartilage and bone erosion. Therefore, the aim of this study was to determine how MSU crystals stimulate chondrocytes.
Methods: Nitric oxide (NO) release, and expression of inducible nitric oxide synthase (iNOS) and matrix metalloproteinase 3 (MMP-3) were assessed in cultured chondrocytes treated with MSU. MSU-induced functional signaling by specific protein kinases (p38, Src, and the focal adhesion kinase [FAK] family members proline-rich tyrosine kinase 2 [Pyk-2] and FAK) was also examined using selective pharmacologic inhibitors and transfection of kinase mutants.
Results: MSU induced MMP-3 and iNOS expression and NO release in chondrocytes in a p38-dependent manner that did not require interleukin-1 (IL-1), as demonstrated by using IL-1 receptor antagonist. MSU induced rapid tyrosine phosphorylation of Pyk-2 and FAK, their adaptor protein paxillin, and interacting kinase c-Src. Pyk-2 and c-Src signaling both mediated p38 MAPK activation in response to MSU. Pyk-2 and c-Src signaling played a major role in transducing MSU-induced NO production and MMP-3 expression. But, despite the observed FAK phosphorylation, a selective pharmacologic FAK inhibitor and a FAK dominant-negative mutant both failed to block MSU-induced NO release or MMP-3 expression in parallel experiments.
Conclusion: In chondrocytes, MSU crystals activate a signaling kinase cascade typically employed by adhesion receptors that involves upstream Src and FAK family activation and downstream p38 activation. In this cascade, Pyk-2, Src, and p38 kinases transduce MSU-induced NO production and MMP-3 expression. Our results identify Pyk-2 and c-Src as novel sites for potential therapeutic intervention in cartilage degradation in chronic gout.