In addition to their inhibitory effects, cannabinoids also exert stimulatory activity which can be detected at the cellular level. In a previous study, we demonstrated a stimulatory effect of the synthetic cannabinoid receptor agonist desacetyllevonantradol (DALN) on Ca(2+) flux into N18TG2 neuroblastoma cells, and suggested a dual mechanism: one pathway mediated by PKA and the other one by protein kinase C (PKC). Here we studied the PKC-mediated effect of DALN on Ca(2+) influx. The stimulatory effect of DALN on Ca(2+) influx was partially blocked by the PKC inhibitor chelerythrine, by the metalloprotease inhibitor o-phenanthroline and by the MEK (mitogen-activated protein-kinase kinase, MAPK kinase) inhibitor PD98059. Immunobloting of ERK1/2 MAPK demonstrated phosphorylation by DALN, and indicated the involvement of vascular endothelial growth factor (VEGF) receptor tyrosin kinases (RTKs) in MAPK activation as it was blocked by oxindole-1. Transactivation of the VEGFR-MAPK cascade by DALN involved CB1 cannabinoid receptors coupled to Gi/Go GTP-binding proteins as it was blocked by SR141716A and by pertussis toxin (PTX). The pharmacological implications of this novel mechanism of cannabinoid activity are discussed.