Agonist binding and Gq-stimulating activities of the purified human P2Y1 receptor

Mol Pharmacol. 2004 Feb;65(2):426-36. doi: 10.1124/mol.65.2.426.

Abstract

The human P2Y1 receptor (P2Y1-R) was purified after high-level expression from a recombinant baculovirus in Sf9 insect cells. Quantification by protein staining and with a radioligand binding assay using the high-affinity P2Y1-R antagonist [3H]MRS2279 ([3H]2-chloro-N6-methyl-(N)-methanocarba-2'-deoxyadenosine 3',5'-bis-phosphate) indicated a nearly homogenous preparation of receptor protein. Ki values determined in [3H]MRS2279 binding assays for antagonists with the purified P2Y1-R were in good agreement with the Ki and KB values determined for these molecules in membrane binding and activity assays, respectively. Availability of P2Y1-R in purified form allowed direct determination of nucleotide agonist affinities under conditions not compromised by nucleotide metabolism/interconversion, and an order of affinities of 2-methylthio-ADP (2MeSADP) > ADP = 2-methylthioATP = adenosine-5'-O-(3-thio)triphosphate = adenosine-5'-O(2-thiodiphosphate) >> ATP was obtained. The signaling activity of the purified P2Y1-R was quantified after reconstitution in proteoliposomes with heterotrimeric G proteins. Steady-state GTP hydrolysis in vesicles reconstituted with P2Y1-R and Galpha(q)beta(1)gamma(2) was stimulated by the addition of either 2MeADP or RGS4 alone and was increased by up to 50-fold in their combined presence. EC50 values of agonists for activation of the purified P2Y1-R were similar to their respective Ki values determined in radioligand binding experiments with the purified receptor. Moreover, ATP exhibited 20-fold higher EC50 and Ki values than did ADP and was a partial agonist relative to ADP and 2MeSADP under conditions in which no metabolism of the nucleotide occurred. Both RGS4 and PLC-beta1 were potent and efficacious GTPase-activating proteins for Galphaq and Galpha11 in P2Y1-R-containing vesicles. These results illustrate that the binding and signaling properties of the human P2Y1-R can be studied with purified proteins under conditions that circumvent the complications that occur in vivo.

Publication types

  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Adenosine Diphosphate / analogs & derivatives*
  • Adenosine Diphosphate / metabolism
  • Adenosine Diphosphate / pharmacology
  • Animals
  • Dose-Response Relationship, Drug
  • GTP-Binding Protein alpha Subunits, Gq-G11 / metabolism*
  • Humans
  • Insecta
  • Protein Binding / drug effects
  • Protein Binding / physiology
  • Purinergic P2 Receptor Agonists*
  • Receptors, Purinergic P2 / metabolism*
  • Receptors, Purinergic P2Y1

Substances

  • 2-chloro-N6-methyl-(N)-methanocarba-2'-deoxyadenosine-3',5'-bisphosphate
  • P2RY1 protein, human
  • Purinergic P2 Receptor Agonists
  • Receptors, Purinergic P2
  • Receptors, Purinergic P2Y1
  • Adenosine Diphosphate
  • GTP-Binding Protein alpha Subunits, Gq-G11