The use of vitamin D3 and its metabolites to improve beef tenderness

J Anim Sci. 2004 Jan;82(1):242-9. doi: 10.2527/2004.821242x.


Three experiments were conducted to determine whether feeding 25-hydroxyvitamin D3 (25-OH D3) or 1,25-dihydroxyvitamin D3 (1,25-(OH)2 D3) improves the tenderness of longissimus dorsi (LD), semimembranosus (SM), and infraspinatus (IF) muscles similar to supplemental vitamin D3 without leaving residual vitamin D3 and its metabolites in muscle. In the first two experiments, 24 crossbred steers were used to determine the effects of different oral amounts of 1,25-(OH)2 D3 (Exp. 1; n = 12) and 25-OH D3 (Exp. 2; n = 12) on plasma Ca2+ concentrations. In the third experiment, crossbred steers were allotted randomly to one of four treatments: 1) control placebo (n = 7); 2) 5 x 10(6) IU of vitamin D3/d (n = 9) for 9 d and harvested 2 d after last treatment; 3) single, 125-mg dose of 25-OH D3 (n = 8) 4 d before harvest; or 4) single, 500-microg dose of 1,25-(OH)2 D3 (n = 9) 3 d before harvest. The LD and SM steaks from each animal were aged for 8, 14, or 21 d, whereas steaks from the IF were aged for 14 or 21 d. All steaks were analyzed for tenderness by Warner-Bratzler shear force and for troponin-T degradation by Western blot analysis. Supplementing steers with vitamin D3 increased (P < 0.01) the concentration of vitamin D3 and 25-OH D3 in all muscles sampled. Feeding steers 25-OH D3 increased (P < 0.05) the concentration of 25-OH D3 in meat, but to an amount less than half that of cattle treated with vitamin D3. Supplemental 1,25-(OH)2 D3 did not affect (P < 0.10) shear force values; however, there was a trend (P < 0.10) for supplemental vitamin D3 and 25-OH D3 to produce LD steaks with lower shear values after 8 and 14 d of aging, and lower (P < 0.10) shear force values for the SM aged for 21 d. Analysis of Western blots indicated that LD steaks from cattle supplemented with vitamin D3 and 25-OH D3 had greater (P < 0.05) troponin-T degradation. Antemortem supplementation of 25-OH D3 seems to increase postmortem proteolysis and tenderness in the LD and SM without depositing large concentrations of residual vitamin D3 and its metabolite 25-OH D3.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Administration, Oral
  • Animal Feed
  • Animals
  • Calcifediol / administration & dosage
  • Calcifediol / pharmacology
  • Calcitriol / administration & dosage
  • Calcitriol / pharmacology
  • Calcium / blood
  • Calcium / metabolism*
  • Cattle / blood
  • Cattle / metabolism*
  • Cholecalciferol / administration & dosage*
  • Cholecalciferol / pharmacology
  • Dose-Response Relationship, Drug
  • Kidney / metabolism
  • Liver / metabolism
  • Male
  • Meat / standards*
  • Muscle, Skeletal / drug effects
  • Muscle, Skeletal / metabolism
  • Postmortem Changes
  • Random Allocation
  • Stress, Mechanical
  • Taste
  • Time Factors


  • Cholecalciferol
  • Calcitriol
  • Calcifediol
  • Calcium