The unusual vascular structure of the corm of Eriophorum vaginatum: implications for efficient retranslocation of nutrients

J Exp Bot. 2004 Mar;55(397):731-41. doi: 10.1093/jxb/erh054. Epub 2004 Jan 30.

Abstract

Eriophorum spp. are abundant perennial graminoids in the Arctic tundra and boreal peatlands. Because ecological studies indicated that some plants are unusually productive on infertile and cold sites, the anatomy of the overwintering corms of Eriophorum vaginatum (L.) and Eriophorum scheuchzeri (Hoppe) were examined to determine their involvement in nutrient uptake and storage. Components of the long-distance transport pathways were identified within the plants by using histochemical techniques and transport of apoplastic and symplastic dyes. E. scheuchzeri produced a rhizome that consisted mainly of storage parenchyma cells within which collateral vascular bundles were centrally located and arranged in a circle. By contrast, E. vaginatum developed a ring of horizontally arranged xylem and phloem, in addition to axial amphivasal vascular bundles leading to the leaves, all of which were bordered by transfer cells. As shown by the transport of fluorescein in the phloem and Safranine O in the xylem, each axial bundle and adventitious root contacted the horizontal ring of vascular tissues so that solutes from one vascular bundle were translocated into the vascular ring and circulated to another vascular bundle and/or to the roots. In addition, special groups of sclereids that functioned in both phloem and xylem transport were found at the base of the leaf traces and within junctions of senescing roots. These sclereids were named 'vascular sclerenchyma' and it was hypothesized that they provide a moving end for the vascular system because the corm dies progressively from the distal end as it grows upward from the apical meristem. It was concluded that this unusual vascular system of E. vaginatum is efficient in recycling nutrients internally, which may account for its competitive advantage in infertile and cold sites.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Acclimatization
  • Alaska
  • Arctic Regions
  • Biological Transport
  • Cyperaceae / anatomy & histology*
  • Cyperaceae / physiology
  • Ecosystem
  • Light