From Head to Tail: The Myoseptal System in Basal Actinopterygians

J Morphol. 2004 Feb;259(2):155-71. doi: 10.1002/jmor.10175.

Abstract

Experimental studies indicated that myomeres play several functional roles during swimming. Some of the functions in question are thought to change rostrocaudally, e.g., anterior myomeres are thought to generate forces, whereas posterior myomeres are thought to transmit forces. In order to determine whether these putative functions are reflected in myoseptal morphology we carried out an analysis of the myoseptal system that includes epaxial and hypaxial myosepta of all body regions for the first time. We combined clearing and staining, microdissections, polarized light microscopy, SEM technique, and length measurements of myoseptal parts to reveal the spatial arrangement, collagen fiber architecture, and rostrocaudal gradients of myosepta. We included representatives of the four basal actinopterygian clades to evaluate our findings in an evolutionary and in a functional context. Our comparison revealed a set of actinopterygian groundplan features. This includes a set of specifically arranged myoseptal tendons (epineural, epipleural, lateral, and myorhabdoid tendons) in all epaxial and postanal hypaxial myosepta. Only preanal hypaxial myosepta lack tendons and exclusively consist of mediolateral fibers. Laterally, myosepta generally align with the helically wound fibers of the dermis in order not to limit the body's maximum curvature. Medially, the relationship of myosepta to vertebrae clearly differs from a 1:1 relationship: a myoseptum attaches to the anterior margin of a vertebra, turns caudally, and traverses at least three vertebrae in an almost horizontal orientation in all body regions. By this arrangement, horizontal multiple layers of myosepta are formed along the trunk dorsal and ventral to the horizontal septum. Due to their reinforcement by epineural or epipleural tendons, these multiple layers are hypothesized to resist the radial expansion of underlying muscle fibers and thus contribute to modulation of body stiffness. Rostrocaudally, a dorsoventral symmetry of epaxial and hypaxial myosepta in terms of spatial arrangement and collagen fiber architecture is gradually developed towards the postanal region. Furthermore, the rostrocaudal extension of myosepta measured between anterior and posterior cones gradually increases. This myoseptal region is reinforced by longitudinal fibers of lateral tendons. Furthermore, the percentage of connective tissue in a cross section increases. These morphological data indicate that posterior myosepta are equipped for multisegmental force transmission towards the caudal fin. Anteriormost myosepta have reinforced and elongated dorsal posterior cones. They are adequately designed to transmit epaxial muscular forces to the neurocranium in order to cause its elevation during suction feeding.

MeSH terms

  • Anatomy, Artistic
  • Animals
  • Biological Evolution
  • Fishes / anatomy & histology*
  • Fishes / physiology
  • Head / anatomy & histology*
  • Microscopy, Electron, Scanning
  • Microscopy, Polarization
  • Muscle, Skeletal / anatomy & histology
  • Muscle, Skeletal / ultrastructure
  • Skin / anatomy & histology
  • Swimming
  • Tail / anatomy & histology*