Objective: To determine possible exposure-associated delays in auditory brainstem evoked potential latencies as an objective measure of neurobehavioral toxicity in 14-year-old children with developmental exposure to methylmercury (MeHg) from seafood.
Study design: Prospective study of a birth cohort in the Faroe Islands, where 878 of eligible children (87%) were examined at age 14 years. Latencies of brainstem evoked potential peaks I, III, and V at 20 and 40 Hz constituted the outcome variables. Mercury concentrations were determined in cord blood and maternal hair, and in the child's hair at ages 7 and 14.
Results: Latencies of peaks III and V increased by about 0.012 ms when the cord blood mercury concentration doubled. As seen at age 7 years, this effect appeared mainly within the I-III interpeak interval. Despite lower postnatal exposures, the child's hair mercury level at age 14 years was associated with prolonged III-V interpeak latencies. All benchmark dose results were similar to those obtained for dose-response relationships at age 7 years.
Conclusions: The persistence of prolonged I-III interpeak intervals indicates that some neurotoxic effects from intrauterine MeHg exposure are irreversible. A change in vulnerability to MeHg toxicity is suggested by the apparent sensitivity of the peak III-V component to recent MeHg exposure.