Potential role of retinal pigment epithelial lipofuscin accumulation in age-related macular degeneration

Arch Gerontol Geriatr. 2002 May-Jun;34(3):359-70. doi: 10.1016/s0167-4943(02)00012-2.


Age-related macular degeneration (AMD) is a leading cause of severe visual impairment in developed countries. The vision loss associated with AMD is the result of degenerative changes in the central region of the retina called the macula. Maintenance of normal structure and function of the macular retina, and of the remainder of the retina as well, is critically dependent on the supporting role of the adjacent retinal pigment epithelium (RPE). Impairment of normal RPE functions is known to result in retinal degeneration and loss of visual function. Thus, it has been hypothesized that the retinal degeneration that characterizes AMD is secondary to age-related deterioration in RPE support functions. Like many other postmitotic cell types, the RPE accumulates autofluorescent lysosomal storage bodies (lipofuscin) during senescence. In human eyes, lipofuscin comes to occupy a substantial fraction of the RPE cytoplasmic volume in the elderly. Does this lipofuscin accumulation contribute to the development of AMD? This question is a specific case of the broader question of whether lipofuscin accumulation in general is detrimental to cells. Unfortunately, definitive data do not exist to allow these questions to be answered. Although a correlation between RPE lipofuscin content and AMD has been reported, a cause-and-effect relationship between RPE lipofuscin accumulation and the development of this disease has not been established. It has been reported that a mutation in a gene encoding a photoreceptor-specific protein results in massive RPE lipofuscin accumulation and early-onset macular degeneration. However, again the accelerated RPE lipofuscin accumulation has not been shown to be the cause of the accompanying macular degeneration. The lack of a definitive link between RPE lipofuscin accumulation and AMD illustrates one of the biggest challenges remaining in lipofuscin research-determining whether lipofuscin accumulation per se has an impact on cell function.