We propose a computationally coherent model of cerebellar motor learning based on the feedback-error-learning scheme. We assume that climbing fiber responses represent motor-command errors generated by some of the premotor networks such as the feedback controllers at the spinal-, brain stem- and cerebral levels. Thus, in our model, climbing fiber responses are considered to convey motor errors in the motor-command coordinates rather than in the sensory coordinates. Based on the long-term depression in Purkinje cells each corticonuclear microcomplex in different regions of the cerebellum learns to execute predictive and coordinative control of different types of movements. Ultimately, it acquires an inverse model of a specific controlled object and complements crude control by the premotor networks. This general model is developed in detail as a specific neural circuit model for the lateral hemisphere. A new experiment is suggested to elucidate the coordinate frame in which climbing fiber responses are represented.