[Ischemia-reperfusion myocardial injury]

Arch Cardiol Mex. Oct-Dec 2003;73(4):284-90.
[Article in Spanish]


In this article, we present some considerations on the myocardial damage due to a deficit of oxygen supply. In fact, this damage properly constitutes a partial diastolic depolarization or injury, i.e., a moderate reduction of the rest transmembrane potential. This phenomenon is characteristic of the acute phase of the myocardial infarction syndrome and is responsible for the main electrical manifestations appearing in this phase: disorders of rhythm and conduction, as well as a reduced contractility of the involved myocardial fibers. All the mentioned phenomena are due to a defect of the myocardial energetic mechanisms, owing to the mitochondrial alterations in myocytes: early reduction of the nicotinamide adenine nucleotides, accumulation of calcium ("calcium overload") into mitochondria, and a drop in oxidative phosphorylation. These changes can present again, more exaggerated, in a following phase of evolution of the myocardial infarction due to myocardial reperfusion. Its severity is related to the duration of the initial ischemia period. Moreover, consequences of the oxidative stress can add producing cellular damage by liberation of reactive oxygen species. Oxidant stress causes also alterations in the mitochondrial DNA, i.e., mutations due to oxidation of nitrogenous bases. During the initial ischemia phase, as well as during reperfusion, metabolic therapy can be very useful as, for example, glucose-insulin-potassium solutions (G-I-K). These could act as scavengers of the free radicals derived from oxygen and avoid or reduce the myocardial damage due to reperfused myocytes. Metabolic drugs, as for example trimetazidine, antioxidants, etc, can also be used in the myocardial reperfusion phase.

Publication types

  • English Abstract
  • Review

MeSH terms

  • Electrophysiology
  • Humans
  • Mitochondria / metabolism
  • Myocardial Reperfusion Injury* / metabolism
  • Myocardial Reperfusion Injury* / pathology
  • Myocardial Reperfusion Injury* / physiopathology
  • Myocardial Reperfusion Injury* / therapy
  • Oxidative Stress