Spatial homogeneity and temporal heterogeneity of red drum (Sciaenops ocellatus) microsatellites: effective population sizes and management implications

Mar Biotechnol (NY). 2002 Dec;4(6):589-603. doi: 10.1007/s10126-002-0038-5.

Abstract

The red drum (Sciaenops ocellatus) is one of a number of species that occupy estuarine waters as juveniles and migrate to open ocean waters as adults. This species has experienced dramatic declines in population numbers over the past 2 decades, which has prompted increasing fishery restriction. In addition, hatchery augmentation has been initiated by several states to increase the abundance of juveniles in local areas. In South Carolina hatchery-reared fish have made significant (20%) contributions to the juvenile population on very local scales. As hatchery-reared fish are typically produced by a small number of individuals, the genetic consequences of augmentation programs are of concern. In this article we assess genetic variation at 5 microsatellite loci in S. ocellatus. The data indicate little geographic differentiation among samples collected along the Atlantic Coast of the United States, but substantial differences among year classes taken from South Carolina. The gene frequency differences among year classes were used to estimate the effective population size (Nc) of S. ocellatus in South Carolina and suggested that Ne was less than 300 from 1990 to 1993 and increased to about 1000 in 1994 and 1995. Whether this increase reflects the effectiveness of management regulations or simply a random fluctuation in S. ocellatus populations is not clear. The data suggest that a limited number of individuals produce the bulk of a given year class and support the sweepstakes hypothesis. Given the small Ne and estimates of the contribution of hatchery-reared fish to the wild stock, it is suggested that programs have the potential to increase, rather than decrease; Ne in the wild.