Osteoblast response to PLGA tissue engineering scaffolds with PEO modified surface chemistries and demonstration of patterned cell response

Biomaterials. 2004 Jun;25(14):2819-30. doi: 10.1016/j.biomaterials.2003.09.064.


Because tissues are characterized by a well-defined three-dimensional arrangement of cells, tissue engineering scaffolds that facilitate the organization and differentiation of new tissue will have improved performance in comparison to scaffolds that only provide surfaces for cell attachment and growth. We hypothesize that instructions for cells can be incorporated into tissue engineering scaffolds by patterning the scaffold's architecture and surface chemistry. Our goals for the presented work were to collect data about cell response to three-dimensional, porous scaffolds with uniformly modified surfaces chemistries, and to demonstrate patterning of cell response by patterning surface chemistry. Our system was osteoblast response to poly(l-lactide-co-glycolide) scaffolds modified with poly(ethylene oxide) (PEO). Scaffolds were fabricated using the Three-Dimensional Printing (3DP) process which has control over scaffolds properties to a resolution of approximately 100 microm in all three dimensions. At higher PEO concentrations, adhesion, growth rates, and migration of rat osteoblasts were reduced; alkaline phosphate activity was increased, and cells were less spread and had microvilli. Patterned regions of low and high cell adhesion were demonstrated on scaffolds fabricated with 1 mm thick stripes of PEO and non-PEO regions.

Publication types

  • Comparative Study
  • Evaluation Study
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Biocompatible Materials / chemistry*
  • Cell Adhesion
  • Cell Culture Techniques / methods
  • Cell Differentiation
  • Cell Division
  • Cell Line
  • Cell Movement / physiology*
  • Humans
  • Lactic Acid / chemistry*
  • Materials Testing
  • Osteoblasts / cytology*
  • Osteoblasts / physiology*
  • Polyethylene Glycols / chemistry*
  • Polyglycolic Acid / chemistry*
  • Polylactic Acid-Polyglycolic Acid Copolymer
  • Polymers / chemistry*
  • Rats
  • Surface Properties
  • Tissue Engineering / methods*


  • Biocompatible Materials
  • Polymers
  • Polylactic Acid-Polyglycolic Acid Copolymer
  • Polyglycolic Acid
  • Lactic Acid
  • Polyethylene Glycols