Planting stress in newly planted jack pine and white spruce. 1. Factors influencing water uptake

Tree Physiol. 1988 Mar;4(1):71-83. doi: 10.1093/treephys/4.1.71.


Bareroot jack pine (Pinus banksiana Lamb.) seedlings (2 + 0) and bareroot white spruce (Picea glauca (Moench) Voss) transplants (1 1/2 + 1 1/2) were taken from cold storage and planted on a clearcut forest site in northeastern Ontario on several dates between May 6 and June 5 during which period soil temperature at 15 cm depth increased from 0 to 18 degrees C. Additional cold-stored trees were transferred to a greenhouse where they were grown in pots for 0, 7 or 28 days and then placed with their roots in aerated water maintained at one of a range of constant temperatures between 0 and 22 degrees C. In both species, daytime xylem pressure potentials (Psi(x)) and needle conductances (g(wv)) decreased with decreasing soil or water temperature. At all root temperatures, g(wv) was lower, and Psi(x) higher, in jack pine than in white spruce. After 28 days in the greenhouse, g(wv) of jack pine seedlings, and Psi(x) of white spruce, was higher than in plants just removed from cold storage. In both species, water-flow resistance through the soil-plant-atmosphere continuum (RSPAC) increased as root temperature decreased. At all root temperatures, RSPAC was higher in plants just removed from cold storage than in plants grown in the greenhouse for 28 days, during which time many new unsuberized roots were formed. At root temperatures above 10 degrees C, RSPAC of both species was higher in trees newly planted in mineral soil than in trees with roots in aerated water; presumably because the roots of planted trees had limited hydraulic contact with the soil. On the day following removal from cold storage, relative plant water flow resistance increased, in both species, more rapidly with declining root temperature than could be accounted for by the change with temperature in the viscosity of water, thus indicating an effect of temperature on root permeability. The same effect was evident in jack pine seedlings, but not white spruce transplants, that had been grown for 28 days in the greenhouse after removal from cold storage.