Synthesis, structural investigations and biological evaluation of novel hexahydropyridazine-1-carboximidamides, -carbothioamides and -carbothioimidic acid esters as inducible nitric oxide synthase inhibitors

Bioorg Med Chem. 2004 Mar 1;12(5):1071-89. doi: 10.1016/j.bmc.2003.12.007.

Abstract

Local excess of nitric oxide (NO) has been implicated in beta-cell damage, thus, a possible approach to the treatment of autoimmune IDDM is the selective inhibition of inducible nitric oxide synthase (iNOS). A series of variously substituted hexahydropyridazine-1-carbothioamides, -carbothioimidic acid esters and -carboximidamides was synthesized and dose-dependently evaluated as potential inhibitors of iNOS. The screening of the title compounds was performed with insulin-producing RIN-5AH cells and a combination of IL1-1 beta and IFN-gamma as inducers of cellular NO production. The structure-activity analysis revealed that the variation of substituents in the position 1 of the hexahydropyridazine strongly influences the inhibitory activity to iNOS as well as being critical for RIN cell survival. Among the compounds tested, the hexahydropyridazine-1-carbothioamides showed particularly significant inhibitory effects. However, for an efficient iNOS inhibition substitution at the nitrogen of the 1-carbothioamide group is important. Thus, the introduction of aliphatic chains such as propyl or butyl and of cyclic moieties such as cyclohexyl, 3-methoxyphenyl, and 4-methoxyphenyl (IC(50): 0.5-2.1 mM), respectively, provided compounds with similar inhibitory activity to aminoguanidine (IC(50): 0.3 mM), a common standard substance used for the selective inhibition of iNOS. However, the 1-carboximidamides, which represent more structurally related semicyclic derivatives of aminoguanidine, caused only incomplete iNOS inhibition. The hexahydropyridazine-1-carbothioimidic acid esters caused dose- and substituent-dependent damage of RIN-5AH cells. The toxicity of the synthesized compounds increased markedly if aliphatic substituents at the exocyclic N atom(s) were replaced by variously substituted aromatic rings.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Amides / chemical synthesis*
  • Amides / chemistry
  • Amides / pharmacology*
  • Cell Line
  • Diabetes Mellitus, Type 1 / drug therapy
  • Diabetes Mellitus, Type 1 / pathology
  • Humans
  • Imidoesters / chemical synthesis*
  • Imidoesters / chemistry
  • Imidoesters / pharmacology*
  • Inhibitory Concentration 50
  • Nitric Oxide / analysis
  • Nitric Oxide / biosynthesis
  • Nitric Oxide Synthase / antagonists & inhibitors*
  • Nitric Oxide Synthase Type II
  • Structure-Activity Relationship

Substances

  • Amides
  • Imidoesters
  • Nitric Oxide
  • NOS2 protein, human
  • Nitric Oxide Synthase
  • Nitric Oxide Synthase Type II