The topographical organization and ultrastructural features of the intralaminar thalamic nuclei (ITN) projections to the globus pallidus (GP) were studied using the biotinylated dextran amine (BDA) anterograde tracing method in the rat. To assess the functional association of BDA injection sites in the ITN, the known topographical organization of the ITN-neostriatal (Str) projections and calcium binding protein (CaBP) immunostaining patterns of the Str and GP were used. BDA injection in the lateral part of the lateral parafascicular nucleus and the caudal part of the central lateral nucleus labeled fibers and boutons mainly in the dorsolateral sensorimotor territory of the Str and the middle territories of the GP. BDA injection in the medial part of the lateral parafascicular nucleus and the central lateral nucleus labeled mainly the middle association territory of the Str and the border and the caudomedial territories of the GP. BDA injection in the medial parafascicular nucleus and the central medial nucleus labeled mainly the medial limbic territory of the Str. The medial parafascicular nucleus projected to the medial-most region of the GP, while the central medial nucleus projection to the GP was very sparse. Electron microscopic observations indicated that BDA-labeled boutons form asymmetric synapses mainly on 0.5-2.0 microm diameter dendritic shafts in the GP. The boutons were small but had a relatively long active zone. The present observations together with the known topographical organization of striatopallidal projections indicated that the ITN-GP projections were topographically organized in parallel to the ITN-Str projections. Thus, each part of the ITN projecting to the sensorimotor, the association, and the limbic territories of the Str also projects to the corresponding functional territories of the GP.
Copyright 2004 Wiley-Liss, Inc.