Mechanical efficiency and metabolic cost as measures of learning a novel gross motor task

J Mot Behav. 1987 Jun;19(2):240-64. doi: 10.1080/00222895.1987.10735410.

Abstract

"Efficiency, " or economy of movement with respect to energy expended in achieving the goal of the task, is implicit in many definitions of skilled performance. This study examined changes in mechanical efficiency and transport efficiency on a novel gross motor skill. The subjects were 5 physically fit adult males who were asked to perform 20 3-min trials walking on hands and feet (crawling) on a motor-driven treadmill at constant speed (0.76 m/s). Transport efficiency, the metabolic cost of transporting the body mass a given distance at constant speed, improved significantly over practice trials. Mechanical efficiency, derived from the mechanical power output of individual body segments, showed an overall improvement of 13.7% by the last day of practice. Even though this improvement was not statistically significant it appears to be greater than that expected due to physiological training effects. The efficiency measures correlated significantly with changes in limb kinematics. It was concluded that with practice subjects tailored their movement pattern to produce energy efficient adaptations to task constraints. These findings provide empirical support for theoretical perspectives that have emphasized biological principles in the organization of motor coordination and control.