Phase field modeling of electrochemistry. I. Equilibrium
- PMID: 14995454
- DOI: 10.1103/PhysRevE.69.021603
Phase field modeling of electrochemistry. I. Equilibrium
Abstract
A diffuse interface (phase field) model for an electrochemical system is developed. We describe the minimal set of components needed to model an electrochemical interface and present a variational derivation of the governing equations. With a simple set of assumptions: mass and volume constraints, Poisson's equation, ideal solution thermodynamics in the bulk, and a simple description of the competing energies in the interface, the model captures the charge separation associated with the equilibrium double layer at the electrochemical interface. The decay of the electrostatic potential in the electrolyte agrees with the classical Gouy-Chapman and Debye-Hückel theories. We calculate the surface free energy, surface charge, and differential capacitance as functions of potential and find qualitative agreement between the model and existing theories and experiments. In particular, the differential capacitance curves exhibit complex shapes with multiple extrema, as exhibited in many electrochemical systems.
Similar articles
-
Double-layer in ionic liquids: paradigm change?J Phys Chem B. 2007 May 24;111(20):5545-57. doi: 10.1021/jp067857o. Epub 2007 May 1. J Phys Chem B. 2007. PMID: 17469864
-
The electrochemical potential and ionic activity coefficients. A possible correction for Debye-Hückel and Maxwell-Boltzmann equations for dilute electrolyte equilibria.J Colloid Interface Sci. 2009 Nov 15;339(2):542-4. doi: 10.1016/j.jcis.2009.07.014. Epub 2009 Jul 12. J Colloid Interface Sci. 2009. PMID: 19656523
-
Generalization of the Gouy-Chapman-Stern model of an electric double layer for a morphologically complex electrode: deterministic and stochastic morphologies.Phys Rev E Stat Nonlin Soft Matter Phys. 2013 Nov;88(5):052303. doi: 10.1103/PhysRevE.88.052303. Epub 2013 Nov 7. Phys Rev E Stat Nonlin Soft Matter Phys. 2013. PMID: 24329260
-
Double Layer at the Pt(111)-Aqueous Electrolyte Interface: Potential of Zero Charge and Anomalous Gouy-Chapman Screening.Angew Chem Int Ed Engl. 2020 Jan 7;59(2):711-715. doi: 10.1002/anie.201911929. Epub 2019 Nov 26. Angew Chem Int Ed Engl. 2020. PMID: 31682314 Free PMC article.
-
GENERIC model for multiphase systems.Adv Colloid Interface Sci. 2010 Jan 15;153(1-2):58-69. doi: 10.1016/j.cis.2009.12.003. Epub 2010 Jan 6. Adv Colloid Interface Sci. 2010. PMID: 20097324 Review.
Cited by
-
A Review on Cementitious Self-Healing and the Potential of Phase-Field Methods for Modeling Crack-Closing and Fracture Recovery.Materials (Basel). 2020 Nov 21;13(22):5265. doi: 10.3390/ma13225265. Materials (Basel). 2020. PMID: 33233368 Free PMC article. Review.
-
Phase-field modeling for pH-dependent general and pitting corrosion of iron.Sci Rep. 2018 Aug 24;8(1):12777. doi: 10.1038/s41598-018-31145-7. Sci Rep. 2018. PMID: 30143681 Free PMC article.
-
Topology-generating interfacial pattern formation during liquid metal dealloying.Nat Commun. 2015 Nov 19;6:8887. doi: 10.1038/ncomms9887. Nat Commun. 2015. PMID: 26582248 Free PMC article.
-
Multiscale modeling of lithium ion batteries: thermal aspects.Beilstein J Nanotechnol. 2015 Apr 20;6:987-1007. doi: 10.3762/bjnano.6.102. eCollection 2015. Beilstein J Nanotechnol. 2015. PMID: 25977870 Free PMC article.
-
Macropore formation in p-type silicon: toward the modeling of morphology.Nanoscale Res Lett. 2014 Oct 21;9(1):585. doi: 10.1186/1556-276X-9-585. eCollection 2014. Nanoscale Res Lett. 2014. PMID: 25386103 Free PMC article.