We measured human psychophysical detection thresholds for test pulses which are superimposed on spatially homogeneous backgrounds that have abrupt onsets and offsets of high-contrast 25 Hz flicker. After the onset of the background flicker, test thresholds reach their steady-state levels within 20-60 ms. After the offset of the background flicker, test thresholds remain elevated above their steady-state level for much longer durations. Adaptation after onsets and offsets of background flicker is modeled with a divisive gain control that is activated by temporal contrast. We show that a feedback structure for the gain control can explain the asymmetric dynamics observed after onsets and offsets of the background contrast. Finally, we measure detection thresholds for tests presented on steadily flickering backgrounds as a function of the contrast of the background flicker. We show that the divisive feedback model for contrast gain control can describe these results as well.