BIOTIN METABOLISM IN PLANTS

Annu Rev Plant Physiol Plant Mol Biol. 2000 Jun:51:17-47. doi: 10.1146/annurev.arplant.51.1.17.

Abstract

Biotin is an essential cofactor for a small number of enzymes involved mainly in the transfer of CO2 during HCO-3-dependent carboxylation reactions. This review highlights progress in plant biotin research by focusing on the four major areas of recent investigation: the structure, enzymology, and localization of two important biotinylated proteins (methylcrotonoyl-CoA carboxylase involved in the catabolism of leucine and noncyclic isoprenoids; acetyl-CoA carboxylase isoforms involved in a number of biosynthetic pathways); the biosynthesis of biotin; the biotinylation of biotin-dependent carboxylases, including the characterization of biotin holocarboxylase synthetase isoforms; and the detailed characterization of a novel, seed-specific biotinylated protein. A central challenge for plant biotin research is to determine in molecular terms how plant cells regulate the flow of biotin to sustain the biotinylation of biotin-dependent carboxylases during biosynthetic reactions.