Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1998 Jun:49:481-500.
doi: 10.1146/annurev.arplant.49.1.481.

BORON IN PLANT STRUCTURE AND FUNCTION

Affiliations

BORON IN PLANT STRUCTURE AND FUNCTION

Dale G. Blevins et al. Annu Rev Plant Physiol Plant Mol Biol. 1998 Jun.

Abstract

New and exciting developments in boron research in the past few years greatly contributed to better understanding of the role of boron in plants. Purification and identification of the first boron-polyol transport molecules resolved much of the controversy about boron phloem mobility. Isolation and characterization of the boron-polysaccharide complex from cell walls provided the first direct evidence for boron crosslinking of pectin polymers. Inhibition and recovery of proton release upon boron withdrawal and restitution in plant culture medium demonstrated boron involvement in membrane processes. Rapid boron-induced changes in membrane function could be attributed to boron-complexing membrane constituents. Boron may affect metabolic pathways by binding apoplastic proteins to cis-hydroxyl groups of cell walls and membranes, and by interfering with manganese-dependent enzymatic reactions. In addition, boron has been implicated in counteracting toxic effects of aluminum on root growth of dicotyledonous plants. Molecular investigations of boron nutrition have been initiated by the discovery of a novel mutant of Arabidopsis thaliana with an altered requirement for boron.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources