Investigation of differentially expressed genes during the development of mouse cerebellum

Brain Res Gene Expr Patterns. 2001 Aug;1(1):39-59. doi: 10.1016/s1567-133x(01)00007-2.


Before the discovery of DNA microarray and DNA chip technology, the expression of only a small number of genes could be analyzed at a time. Currently, such technology allows us the simultaneous analysis of a large number of genes to systematically monitor their expression patterns that may be associated with various biological phenomena. We utilized the Affymetrix GeneChip Mu11K to analyze the gene expression profile in developing mouse cerebellum to assist in the understanding of the genetic basis of cerebellar development in mice. Our analysis showed 81.6% (10,321/12,654) of the genes represented on the GeneChip were expressed in the postnatal cerebellum, and among those, 8.7% (897/10,321) were differentially expressed with more than a two-fold change in their maximum and minimum expression levels during the developmental time course. Further analysis of the differentially expressed genes that were clustered in terms of their expression patterns and the function of their encoded products revealed an aspect of the genetic foundation that lies beneath the cellular events and neural network formation that takes place during the development of the mouse cerebellum.