Nodal and BMP2/4 signaling organizes the oral-aboral axis of the sea urchin embryo
- PMID: 15030762
- DOI: 10.1016/s1534-5807(04)00056-5
Nodal and BMP2/4 signaling organizes the oral-aboral axis of the sea urchin embryo
Abstract
In the sea urchin embryo, the oral-aboral axis is specified after fertilization by mechanisms that are largely unknown. We report that early sea urchin embryos express Nodal and Antivin in the presumptive oral ectoderm and demonstrate that these genes control formation of the oral-aboral axis. Overexpression of nodal converted the whole ectoderm into oral ectoderm and induced ectopic expression of the orally expressed genes goosecoid, brachyury, BMP2/4, and antivin. Conversely, when the function of Nodal was blocked, by injection of an antisense Morpholino oligonucleotide or by injection of antivin mRNA, neither the oral nor the aboral ectoderm were specified. Injection of nodal mRNA into Nodal-deficient embryos induced an oral-aboral axis in a largely non-cell-autonomous manner. These observations suggest that the mechanisms responsible for patterning the oral-aboral axis of the sea urchin embryo may share similarities with mechanisms that pattern the dorsoventral axis of other deuterostomes.
Similar articles
-
Lefty acts as an essential modulator of Nodal activity during sea urchin oral-aboral axis formation.Dev Biol. 2008 Aug 1;320(1):49-59. doi: 10.1016/j.ydbio.2008.04.012. Epub 2008 Apr 20. Dev Biol. 2008. PMID: 18582858
-
A conserved role for the nodal signaling pathway in the establishment of dorso-ventral and left-right axes in deuterostomes.J Exp Zool B Mol Dev Evol. 2008 Jan 15;310(1):41-53. doi: 10.1002/jez.b.21121. J Exp Zool B Mol Dev Evol. 2008. PMID: 16838294 Review.
-
Oral-aboral patterning and gastrulation of sea urchin embryos depend on sulfated glycosaminoglycans.Mech Dev. 2011 Jan-Feb;128(1-2):71-89. doi: 10.1016/j.mod.2010.11.001. Epub 2010 Nov 5. Mech Dev. 2011. PMID: 21056656
-
Multiple signaling events specify ectoderm and pattern the oral-aboral axis in the sea urchin embryo.Development. 1997 Jan;124(1):13-20. doi: 10.1242/dev.124.1.13. Development. 1997. PMID: 9006063
-
Nodal: master and commander of the dorsal-ventral and left-right axes in the sea urchin embryo.Curr Opin Genet Dev. 2013 Aug;23(4):445-53. doi: 10.1016/j.gde.2013.04.010. Epub 2013 Jun 14. Curr Opin Genet Dev. 2013. PMID: 23769944 Review.
Cited by
-
Direct and indirect control of oral ectoderm regulatory gene expression by Nodal signaling in the sea urchin embryo.Dev Biol. 2012 Sep 15;369(2):377-85. doi: 10.1016/j.ydbio.2012.06.022. Epub 2012 Jul 6. Dev Biol. 2012. PMID: 22771578 Free PMC article.
-
Distinct embryotoxic effects of lithium appeared in a new assessment model of the sea urchin: the whole embryo assay and the blastomere culture assay.Ecotoxicology. 2010 Mar;19(3):563-70. doi: 10.1007/s10646-009-0452-9. Epub 2009 Dec 18. Ecotoxicology. 2010. PMID: 20020201
-
Gastrulation in the sea urchin.Curr Top Dev Biol. 2020;136:195-218. doi: 10.1016/bs.ctdb.2019.08.004. Epub 2019 Oct 22. Curr Top Dev Biol. 2020. PMID: 31959288 Free PMC article. Review.
-
A framework for the establishment of a cnidarian gene regulatory network for "endomesoderm" specification: the inputs of ß-catenin/TCF signaling.PLoS Genet. 2012;8(12):e1003164. doi: 10.1371/journal.pgen.1003164. Epub 2012 Dec 27. PLoS Genet. 2012. PMID: 23300467 Free PMC article.
-
Muscle development in Ciona intestinalis requires the b-HLH myogenic regulatory factor gene Ci-MRF.Dev Biol. 2007 Feb 1;302(1):333-44. doi: 10.1016/j.ydbio.2006.09.043. Epub 2006 Sep 29. Dev Biol. 2007. PMID: 17055476 Free PMC article.
Publication types
MeSH terms
Substances
Associated data
- Actions
- Actions
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous
