Biphasic effects of stress upon GLUT8 glucose transporter expression and trafficking in the diabetic rat hippocampus

Brain Res. 2004 Apr 23;1006(1):28-35. doi: 10.1016/j.brainres.2004.01.044.

Abstract

Disease states such as diabetes mellitus are known to impair hippocampal glucoregulatory activities, which may contribute to cognitive deficits observed in diabetic subjects. Stress or exposure to stress levels of glucocorticoids (GCs) are also intimately involved in hippocampal glucoregulatory activities and the actions of GCs are often most evident in hyperglycemic states. Glucose transporter (GLUT) expression, activity and translocation represent components of the glucoregulatory activities of the hippocampus that may be disrupted by diabetes and stress. Accordingly, the current study examined the effects of stress, streptozotocin (STZ)-induced diabetes and the combined actions of stress and hyperglycemia upon GLUT8 mRNA expression, protein levels and intracellular trafficking in the rat hippocampus. Short-term stress in euglycemic rats had no effect upon GLUT8 mRNA, while restraint stress normalized diabetes mediated increases in GLUT8 mRNA expression in STZ treated rats. Radioimmunocytochemical analysis revealed that total GLUT8 protein levels were not altered by diabetes, short-term stress or the combined actions of hyperglycemia and stress. However, subcellular compartmentalization of GLUT8 was modulated by stress in that hippocampal GLUT8 protein levels were increased in high-density microsomal (HDM) fractions isolated from rats subjected to stress. In contrast, STZ-diabetes decreased GLUT8 protein levels in the HDM fraction, an effect that was potentiated by stress. Collectively, these results demonstrate that the actions of GCs may be dramatically different in euglycemic and hyperglycemic/insulinopenic states, suggesting that stress may increase hippocampal neuronal responsiveness under normal physiological conditions while increasing hippocampal neuronal vulnerability in pathophysiological settings such as in type 1 diabetes.

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Autoradiography / methods
  • Blotting, Western / methods
  • Diabetes Mellitus, Experimental / metabolism*
  • Diabetes Mellitus, Experimental / psychology
  • Gene Expression Regulation / physiology*
  • Glucose Transport Proteins, Facilitative
  • Hippocampus / metabolism*
  • Immunohistochemistry / methods
  • In Situ Hybridization / methods
  • Male
  • Microsomes / metabolism
  • Monosaccharide Transport Proteins / genetics
  • Monosaccharide Transport Proteins / metabolism*
  • Protein Transport
  • RNA, Messenger / metabolism
  • Radioimmunoassay / methods
  • Rats
  • Stress, Physiological / metabolism*
  • Synaptophysin / metabolism

Substances

  • Glucose Transport Proteins, Facilitative
  • Monosaccharide Transport Proteins
  • RNA, Messenger
  • Slc2a8 protein, rat
  • Synaptophysin