A method for calculating 16O/18O peptide ion ratios for the relative quantification of proteomes

J Am Soc Mass Spectrom. 2004 Apr;15(4):437-45. doi: 10.1016/j.jasms.2003.11.016.

Abstract

A method is described for the identification and relative quantification of proteomes using accurate mass tags (AMT) generated by nLC-dual ESI-FT-ICR-MS on a 7T instrument in conjunction with stable isotope labeling using 16O/18O ratios. AMTs were used for putative peptide identification, followed by confirmation of peptide identity by tandem mass spectrometry. For a combined set of 58 tryptic peptides from bovine serum albumin (BSA) and human transferrin, a mean mass measurement accuracy of 1.9 ppm +/-0.94 ppm (CIM99%) was obtained. This subset of tryptic peptides was used to measure 16O/18O ratios of 0.36 +/- 0.09 (CIM99%) for BSA (micro = 0.33) and 1.48 +/- 0.47 (CIM99%) for transferrin (micro = 1.0) using a method for calculating 16O/18O ratios from overlapping isotopic multiplets arising from mixtures of 16O, 18O1, and 18O2 labeled C-termini. The model amino acid averagine was used to calculate a representative molecular formula for estimating and subtracting the contributions of naturally occurring isotopes solely as a function of peptide molecular weight. The method was tested against simulated composite 16O/18O spectra where peptide molecular weight, 16O/18O ratio, 18O1/18O2 ratios, and number of sulfur atoms were varied. Relative errors of 20% or less were incurred when the 16O/18O ratios were less than three, even for peptides where the number of sulfur atoms was over- or under-estimated. These data demonstrate that for biomarker discovery, it is advantageous to label the proteome representing the disease state with 18O; and the method is not sensitive to variations in 18O1/18O2 ratio. This approach allows a comprehensive differentiation of expression levels and tentative identification via AMTs, followed by targeted analysis of over- and under-expressed peptides using tandem mass spectrometry, for applications such as the discovery of disease biomarkers.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Amino Acid Sequence
  • Animals
  • Apoproteins / analysis
  • Apoproteins / chemistry
  • Cattle
  • Mass Spectrometry
  • Molecular Sequence Data
  • Oxygen Isotopes
  • Peptides / analysis*
  • Peptides / chemistry*
  • Proteome / analysis*
  • Proteome / chemistry*
  • Serum Albumin / analysis
  • Serum Albumin / chemistry
  • Spectroscopy, Fourier Transform Infrared
  • Transferrin / analysis
  • Transferrin / chemistry

Substances

  • Apoproteins
  • Oxygen Isotopes
  • Peptides
  • Proteome
  • Serum Albumin
  • Transferrin
  • apotransferrin