Studies on sulfatides by quadrupole ion-trap mass spectrometry with electrospray ionization: structural characterization and the fragmentation processes that include an unusual internal galactose residue loss and the classical charge-remote fragmentation

J Am Soc Mass Spectrom. 2004 Apr;15(4):536-46. doi: 10.1016/j.jasms.2003.12.007.


The structural characterization of sulfatides by collisional-activated dissociation (CAD) quadrupole ion-trap tandem mass spectrometric methods with electrospray ionization is described. When subjected to CAD in the negative-ion mode, the [M - H]- ions of sulfatides yield abundant structurally informative ions that permit unequivocal assignments of the long-chain base, and fatty acid constituent including the location of double bond. The identification of the position of the double bond on the fatty acyl substituent is based on the observation of the series of the ions arising from classical charge-remote fragmentation processes similar to those observed by high-energy CAD and by tandem quadrupole mass spectrometry. An unusual internal galactose residue loss due to a rearrangement process was also observed. The [M - H]- ions of sulfatides also dissociates to a ceramide anion, which undergoes consecutive fragmentation processes to yield ions informative for identification of the ceramide moiety and permits distinction the sulfatide with a sphingosine subclass from that with a sphinganine long-chain base subclass. The MS(2)-spectra of the sulfatide subclass with a sphingosine LCB and a alpha-hydroxy fatty acyl substituent (d18:1/hFA-sulfatide) are featured by the prominent ion sets of m/z 568, 550, 540, and 522, originated from a primary cleavage of the fatty acyl CO-CH(OH) bond, and are readily differentiable from those arising from the non-hydroxy sulfatide subclass (d18:1/nFA-sulfatide), in which the ion sets are of low abundance. The fragmentation pathways of sulfatides under low-energy CAD are proposed. The pathways are supported by the MS(2)- and MS(3)-spectra of various compounds, and of their H-D exchanged analogs.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Brain Chemistry
  • Cattle
  • Galactose / chemistry*
  • Molecular Structure
  • Reference Standards
  • Spectrometry, Mass, Electrospray Ionization / methods*
  • Sphingosine / chemistry
  • Structure-Activity Relationship
  • Sulfoglycosphingolipids / analysis*
  • Sulfoglycosphingolipids / chemistry*


  • Sulfoglycosphingolipids
  • Sphingosine
  • Galactose