The silent information regulator protein (Sir2) and its homologs (collectively known as sirtuins) are NAD+-dependent deacetylase enzymes involved in chromosome stability, gene silencing and cell aging in eukaryotes and archaea. The discovery that sirtuin-dependent protein deacetylation is a NAD+-consuming reaction established a link with the energy generation systems of the cell. This link to metabolism was recently extended to the post-translational control of the activity of short-chain fatty acyl-coenzyme A (adenosine monophosphate-forming) synthetases in bacteria and yeast. The crystal structure of the Sir protein complexed with a peptide of a protein substrate provided insights into how sirtuins interact with their protein substrates.