Skip to main page content
Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004;234:1-46.
doi: 10.1016/S0074-7696(04)34001-5.

Leucine-rich Repeat Receptor Kinases in Plants: Structure, Function, and Signal Transduction Pathways


Leucine-rich Repeat Receptor Kinases in Plants: Structure, Function, and Signal Transduction Pathways

Keiko U Torii. Int Rev Cytol. .


Leucine-rich repeat receptor kinases (LRR-RKs) comprise the largest subfamily of transmembrane receptor-like kinases in plants, with over 200 members in Arabidopsis. LRR-RKs regulate a wide variety of developmental and defense-related processes including cell proliferation, stem cell maintenance, hormone perception, host-specific as well as non-host-specific defense response, wounding response, and symbiosis. Several studies indicate that LRR-RKs act as dimers, and some may form a receptor complex with leucine-rich repeat receptor-like proteins (LRR-RPs) that lack a cytoplasmic kinase domain. Despite the fact that structural features of LRR-RKs are fairy similar, five available ligand molecules for LRR-RKs are structurally diverse, from steroids (brassinolides) to peptides (phytosulfokine and systemin) and secreted proteins (CLV3). Precise ligand-binding sites of LRR-RKs are not understood. However, the extracellular "island" domain that intercepts the LRR domain in some LRR-RKs may play an important role in ligand binding. Advances in unveiling components of three LRR-RK signaling pathways, namely BRI1 in steroid signaling, CLV1 in meristem maintenance, and FLS2 in bacterial elicitor perception, revealed an intriguing link between plant LRR-RK and animal receptor signaling pathways. Finally, rapid progress made in LRR-RK research beyond the model system Arabidopsis has provided exciting, novel insights into the evolution of the LRR-RK signaling system in plants, such as BRI1 utilized in the wound-responsive signaling pathway in Solanaceae plants and recruitment of CLV1 in nodule development in leguminous plants.

Similar articles

See all similar articles

Cited by 117 articles

See all "Cited by" articles

Publication types

LinkOut - more resources