Fatty acid regulation of gene transcription

Crit Rev Clin Lab Sci. 2004;41(1):41-78. doi: 10.1080/10408360490278341.


Dietary fat has a dual role in human physiology: a) it functions as a source of energy and structural components for cells; b) it functions as a regulator of gene expression that impacts lipid, carbohydrate, and protein metabolism, as well as cell growth and differentiation. Fatty acid effects on gene expression are cell-specific and influenced by fatty acid structure and metabolism. Fatty acids interact with the genome through several mechanisms. They regulate the activity or nuclear abundance of several transcription factors, including PPAR, LXR, HNF-4, NFkappaB, and SREBP. Fatty acids or their metabolites bind directly to specific transcription factors to regulate gene transcription. Alternatively, fatty acids indirectly act on gene expression through their effects on a) specific enzyme-mediated pathways, such as cyclooxygenase, lipoxygenase, protein kinase C, or sphingomyelinase signal transduction pathways; or b) pathways that involve changes in membrane lipid/lipid raft composition that affect G-protein receptor or tyrosine kinase-linked receptor signaling. Further definition of these fatty acid-regulated pathways will provide insight into the role dietary fat plays in human health and the onset and progression of several chronic diseases, like coronary artery disease and atherosclerosis, dyslipidemia and inflammation, obesity and diabetes, cancer, major depressive disorders, and schizophrenia.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.
  • Review

MeSH terms

  • Animals
  • Dietary Fats / administration & dosage*
  • Fatty Acids / administration & dosage*
  • Gene Expression Regulation*
  • Humans
  • Signal Transduction
  • Transcription Factors / metabolism
  • Transcription, Genetic*


  • Dietary Fats
  • Fatty Acids
  • Transcription Factors