Macroinvertebrate community as a biological indicator of ecological and toxicological factors in Lake Saint-François (Québec)

Environ Pollut. 1996;91(1):65-87. doi: 10.1016/0269-7491(95)00033-n.

Abstract

To assess the potential of the macroinvertebrate community for monitoring variation in the environmental quality of large rivers, the response of littoral macrobenthos in Lake Saint-François, a fluvial lake of the St Lawrence River (Québec) are described. First, the composition of total macroinvertebrate communities and important taxonomic groups as well as the biotic ICI-SL index in 16 littoral stations varying in sedimentology, water chemistry and contamination are described to define indicator species groups and environmental quality ranks. Thereafter, the relative contribution of ecological and toxicological factors in explaining the variation observed in macroinvertebrate assemblages and biotic index were quantified using partial canonical correspondence analysis. Cluster analyses based on taxonomic composition separated five groups of stations where macroinvertebrate assemblages varied in density, composition and tolerance to pollution. The ICI-SL biotic index varied from 7.2 to 27.2 with a mean value of 19 +/- 6. The ICI-SL values determined for the macroinvertebrate communities in Lake Saint-François did not reflect an important deterioration in environmental quality, and there was some agreement between the environmental quality ranking of the stations expressed either by the ICI-SL index or the community cluster analysis. Water conductivity and phosphorus concentration, followed by macrophyte types (Chara, Ceratophyllum) and sediment grain size, were the most significant ecological variables to explain variation in macroinvertebrate communities and derived ICI-SL index in Lake Saint-François. Among the toxicological factors, metals in water (Fe, Cr, Pb, Mn, Zn) and sediment (Mn, Pb, Se), as well as the composite indices of metal and organic contamination (water CI, sediment CI, sediment total PAHs) were the most important factors. The contamination factors selected in our models represented contaminant sorption processes rather than direct toxicological effects. The lack of clear relationships between contaminants and macroinvertebrate variables reflected the relative low level of contamination in the stations sampled in Lake Saint-François. There were some interactions between toxicological and ecological variables that should be considered in the planning of sampling and interpretation of biomonitoring studies. However, the large amount of unexplained variance (49.2-86.6%) in the CCA models underlined the limitations of the use of the indices of macroinvertebrate community structure that were assessed in this study for biomonitoring purposes in the absence of a contrasting pollution gradient.