Hereditary causes of disturbed iron homeostasis in the central nervous system

Ann N Y Acad Sci. 2004 Mar:1012:267-81. doi: 10.1196/annals.1306.022.


Iron is essential for oxidation-reduction catalysis and bioenergetics; however, unless appropriately shielded, this metal plays a crucial role in the formation of toxic oxygen radicals that can attack all biological molecules. Organisms are equipped with specific proteins designed for iron acquisition, export and transport, and storage, as well as with sophisticated mechanisms that maintain the intracellular labile iron pool at an appropriate level. Despite these homeostatic mechanisms, organisms often face the threat of either iron deficiency or iron overload. This review describes several hereditary iron-overloading conditions that are confined to the brain. Recently, a mutation in the L-subunit of ferritin has been described that causes the formation of aberrant L-ferritin with an altered C-terminus. Individuals with this mutation in one allele of L-ferritin have abnormal aggregates of ferritin and iron in the brain, primarily in the globus pallidus. Patients with this dominantly inherited late-onset disease present with symptoms of extrapyramidal dysfunction. Mice with a targeted disruption of a gene for iron regulatory protein 2 (IRP2), a translational repressor of ferritin, misregulate iron metabolism in the intestinal mucosa and the central nervous system. Significant amounts of ferritin and iron accumulate in white matter tracts and nuclei, and adult IRP2-deficient mice develop a movement disorder consisting of ataxia, bradykinesia, and tremor. Mutations in the frataxin gene are responsible for Friedreich's ataxia, the most common of the inherited ataxias. Frataxin appears to regulate mitochondrial iron-sulfur cluster formation, and the neurologic and cardiac manifestations of Friedreich's ataxia are due to iron-mediated mitochondrial toxicity. Patients with Hallervorden-Spatz syndrome, an autosomal recessive, progressive neurodegenerative disorder, have mutations in a novel pantothenate kinase gene (PANK2). The cardinal feature of this extrapyramidal disease is pathologic iron accumulation in the globus pallidus. The defect in PANK2 is predicted to cause the accumulation of cysteine, which binds iron and causes oxidative stress in the iron-rich globus pallidus. Finally, aceruloplasminemia is an autosomal recessive disorder of iron metabolism caused by loss-of-function mutations in ceruloplasmin gene that leads to misregulation of both systemic and central nervous system iron trafficking. Affected individuals suffer from extrapyramidal signs, cerebellar ataxia, progressive neurodegeneration of retina, and diabetes mellitus. Excessive iron depositions are found in the brain, liver, pancreas, and other parenchymal cells, but plasma iron concentrations are decreased. These conditions are not common, but awareness about them is important for differential diagnosis of various neurodegenerative disorders.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Animals
  • Central Nervous System / metabolism*
  • Central Nervous System / physiopathology
  • Friedreich Ataxia / genetics
  • Friedreich Ataxia / metabolism
  • Heredodegenerative Disorders, Nervous System / etiology
  • Heredodegenerative Disorders, Nervous System / genetics*
  • Homeostasis / genetics*
  • Humans
  • Iron / metabolism*
  • Iron Overload / etiology
  • Iron Overload / genetics*
  • Iron-Binding Proteins / physiology


  • Iron-Binding Proteins
  • Iron