Spectroscopic sensing of cancer and cancer therapy: current status of translational research

Cancer Biol Ther. 2004 Mar;3(3):259-67. doi: 10.4161/cbt.3.3.694. Epub 2004 Mar 16.

Abstract

Various types of optical spectroscopy have been investigated as methods to effect a non-invasive, real-time in-situ assessment of tissue pathology. All of these methods have one basic principle in common: the optical spectrum of a tissue contains information about the biochemical composition and/or the structure of the tissue, and that information conveys diagnostic information. The biochemical information can be obtained by measuring absorption, fluorescence, or Raman scattering signals. Structural and morphological information may be obtained by techniques that assess the elastic-scattering properties of tissue. These basic approaches are useful for the detection of cancer as well as for other diagnostic applications such as hemoglobin saturation, intra-luminal detection of atherosclerosis, and simply the identification of different tissue types during procedures. Optical spectroscopic measurements can also be employed in the management of disease treatment. The site-specific pharmacokinetics of chemotherapy and photodynamic therapy agents can be used to customize dosage to the patient, and diagnostic spectroscopy can be used to monitor response to treatment. In recent years clinical studies have provided indications of potential efficacy, and some of these modalities are now entering a translational research stage, with an eye to approval and commercialization. A benefit of these methods is their inherent low cost and ease of implementation, generally mediated with small portable instruments, not requiring any specialized facilities, and eventually not requiring expert interpretation. This paper reviews briefly the most common methods of diagnostic optical spectroscopy, and reviews in greater depth recent clinical translational research invoking scattering spectroscopy as the enabling technology, which has been the experience of the authors.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.
  • Review

MeSH terms

  • Antineoplastic Agents / pharmacokinetics
  • Humans
  • Neoplasms / diagnosis*
  • Neoplasms / drug therapy
  • Optics and Photonics
  • Photochemotherapy
  • Spectrum Analysis, Raman / methods*

Substances

  • Antineoplastic Agents