Infrequent alteration of the DPC4 tumor suppressor gene in renal cell carcinoma

Urol Res. 2004 Jun;32(3):229-35. doi: 10.1007/s00240-004-0410-1. Epub 2004 Apr 24.

Abstract

The aim of this study was to investigate the alterations in the DPC4 tumor suppressor gene in renal cell carcinoma (RCC). The study included 32 tumor specimens from Croatian patients with a diagnosis of RCC. Loss of heterozygosity (LOH) was investigated using three specific oligonucleotide primers for the three DPC4 polymorphic markers. Our investigation of mutations in the DPC4 gene was focused on exons 2, 8, 10 and 11. These exons belong to the mad homology domains 1 (exon 2) and 2 (exons 8-11). The presence of previously documented mutation in exons 2 (codon 100), 8 (codon 358), 10 (codon 412), and 11 (codon 493) was investigated by restriction fragment length polymorphism (RFLP) analysis, as a first screening method. Finally, the study was extended to search for any other type of mutation in the four selected exons by single strand conformation polymorphism (SSCP) assay. To increase heterozygosity, all 32 tumor specimens were tested with primers for three polymorphic markers. A total of 30 (94%) were heterozygous (informative). LOH at any of these markers was only revealed in four (13%) of the 30 informative samples. No tumor samples were positive for mutation in the four investigated exons analyzed by RFLP. In addition, no samples showed other types of mutation in denaturing conditions. Genetic alterations were shown only in a minority of patients, probably because mutation analysis of the DPC4 gene has only been partially covered by our work. It seems that exon 2 (belonging to the MH1 domain) and exons 8, 10, 11 (belonging to the MH2 domain) are not altered in RCC. This investigation must be extended on other exons of DPC4 for a better understanding a role of this gene in renal cell carcinoma.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Carcinoma, Renal Cell / genetics*
  • DNA-Binding Proteins / genetics*
  • Female
  • Humans
  • Kidney Neoplasms / genetics*
  • Loss of Heterozygosity
  • Male
  • Polymerase Chain Reaction
  • Polymorphism, Restriction Fragment Length
  • Polymorphism, Single-Stranded Conformational
  • Smad4 Protein
  • Trans-Activators / genetics*

Substances

  • DNA-Binding Proteins
  • SMAD4 protein, human
  • Smad4 Protein
  • Trans-Activators