Age-related reduction in sagittal plane center of mass motion during obstacle crossing

J Biomech. 2004 Jun;37(6):837-44. doi: 10.1016/j.jbiomech.2003.11.010.


Accidental falls are a leading cause of injury and death in the growing elderly population. Traumatic falls are frequent, costly, and debilitating. Control of balance during locomotion is critical for safe ambulation, but relatively little is known about the natural effect of aging on dynamic balance control. Samples of healthy young (n = 13) and elderly (n = 13) subjects were compared in the interactive measures of center of mass (COM) and center of pressure (COP) during level walking and obstacle crossing conditions. Obstacle heights were normalized to individual body height (2.5%, 5%, 10%, and 15%). Temporal-distance (T-D) variables of gait were also compared. Statistical analyses were conducted using a two-way ANOVA for subject group and obstacle height. T-D parameters were not significantly different between groups; nor were frontal plane COM and COP parameters. Significant age differences did exist for antero-posterior (A/P) motion of the COM (decreased motion in the elderly), and its relationship with the COP (reduced separation between the two variables in the elderly). Anterior COM velocities were also significantly lower in the elderly group. The results confirm the ability of healthy elderly adults to maintain dynamic balance control in the frontal plane during locomotion. Reduced A/P distances between the COM and COP indicate a conservative reduction of the mechanical load on joints of the supporting limb. This conservative strategy may be related to a reduction in muscle strength as it occurs in the natural aging process.

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Accidental Falls
  • Age Factors
  • Aged
  • Aged, 80 and over
  • Case-Control Studies
  • Female
  • Gait*
  • Humans
  • Male
  • Postural Balance / physiology*
  • United States