Apoptosis as a novel target for cancer chemoprevention

J Natl Cancer Inst. 2004 May 5;96(9):662-72. doi: 10.1093/jnci/djh123.


Cancer chemopreventive agents are typically natural products or their synthetic analogs that inhibit the transformation of normal cells to premalignant cells or the progression of premalignant cells to malignant cells. These agents are believed to function by modulating processes associated with xenobiotic biotransformation, with the protection of cellular elements from oxidative damage, or with the promotion of a more differentiated phenotype in target cells. However, an increasing number of chemopreventive agents (e.g., certain retinoids, nonsteroidal anti-inflammatory drugs, polyphenols, and vanilloids) have been shown to stimulate apoptosis in premalignant and malignant cells in vitro or in vivo. Apoptosis is arguably the most potent defense against cancer because it is the mechanism used by metazoans to eliminate deleterious cells. Many chemopreventive agents appear to target signaling intermediates in apoptosis-inducing pathways. Inherently, the process of carcinogenesis selects against apoptosis to initiate, promote, and perpetuate the malignant phenotype. Thus, targeting apoptosis pathways in premalignant cells--in which these pathways are still relatively intact--may be an effective method of cancer prevention. In this review, we construct a paradigm supporting apoptosis as a novel target for cancer chemoprevention by highlighting recent studies of several chemopreventive agents that engage apoptosis pathways.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.
  • Review

MeSH terms

  • Animals
  • Anticarcinogenic Agents / pharmacology
  • Antineoplastic Agents / pharmacology*
  • Antineoplastic Agents / therapeutic use
  • Apoptosis / drug effects*
  • Clinical Trials as Topic
  • Humans
  • Neoplasms / drug therapy*
  • Neoplasms / prevention & control*


  • Anticarcinogenic Agents
  • Antineoplastic Agents