Light deprivation suppresses the light response of inner retina in both young and adult mouse

Vis Neurosci. Jan-Feb 2004;21(1):23-37. doi: 10.1017/s0952523804041033.


The retinal synaptic network continues its development after birth in mammals. Recent studies show that postnatal development of retinal circuitry depends on visual stimulation. We sought to determine whether there is a time period during which the retina shows evidence of increased plasticity. We examined the effects of light deprivation on the retinal light response of mouse retina using electroretinogram (ERG) measurements. Our results showed that dark rearing mice from birth to postnatal day (P) 30, 60, and 90 suppressed the amplitudes of oscillatory potentials (OPs) and the magnitudes of suppression were age independent. In addition, dark-rearing-produced suppression of OP amplitudes can be completely reversed in both young and adult mice by returning them to cyclic light/dark conditions for 1 to 2 weeks. However, the recovery time course was age dependent with younger animals needing a longer time to achieve a full recovery. Furthermore, dark rearing of P60 mice raised under cyclic light/dark conditions for 30 days resulted in a similar magnitude of suppression of OP amplitudes as in age-matched mice dark reared from birth. These findings demonstrate that both the normal developmental changes and the maintenance of mature inner retinal light response in adult animals require visual stimulation. These results indicate a degree of activity-dependent plasticity in mouse retina that has not been previously described.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Aging / physiology*
  • Animals
  • Animals, Newborn / growth & development
  • Animals, Newborn / physiology*
  • Darkness*
  • Electroretinography
  • Light*
  • Mice
  • Mice, Inbred C57BL
  • Neuronal Plasticity
  • Recovery of Function
  • Retina / physiology*
  • Retina / radiation effects*
  • Synapses / physiology
  • Time Factors