Ultrastructure in frozen/etched saline solutions: on the internal cleansing of ice

J Am Chem Soc. 2004 May 19;126(19):5987-9. doi: 10.1021/ja040066k.

Abstract

Seawater, with its 3.5% salt content, freezes into hexagonal ice (Ih) that encloses concentrated brine within its matrix. When unsubmerged sea ice reaches a certain height and temperature, the brine drains downward through narrow channels. This mechanism was now modeled by frozen 2-3.5% saline as investigated by cryo-etch high-resolution secondary electron microscopy. Thus, saline was either plunge-frozen in liquid ethane at -183 degrees C or else high-pressure frozen to -105 degrees C in 5-6 ms. Ice from a freshly exposed surface was then subjected to a high-vacuum sublimation ("etching"), a procedure that removes pure bulk ice in preference to ice from frozen hydrated salt. After chromium-coating the etched surface with a 2-nm film, the sample was examined by cryo-HRSEM. Granular icy "fences" were seen surrounding empty areas where amorphous ice had originally resided. Since the fences, about 1-2 mum high, survived the etching, it is likely that they consist of frozen brine. The presence of such fences suggests that, during freezing, saline can purge itself of salt with remarkable speed (5-6 ms). Alternatively, channels (perhaps routed around submicroscopic crystallites of cubic ice (Ic) embedded in the amorphous ice at -105 degrees C) can guide the migration of salt to the periphery of ice patches. Macromolecules fail to form fences because they diffuse too slowly or because they are too large to pass through the channels.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Freeze Etching*
  • Ice*
  • Microscopy, Electron, Scanning
  • Pressure
  • Sodium Chloride / chemistry*

Substances

  • Ice
  • Sodium Chloride