Trends in antimicrobial resistance, phage types and integrons among Salmonella serotypes from pigs, 1997-2000

J Antimicrob Chemother. 2004 Jun;53(6):997-1003. doi: 10.1093/jac/dkh247. Epub 2004 May 18.


Objectives: The objectives of this study were to determine antimicrobial resistance and to identify phage types and class 1 integrons among non-typhoidal Salmonella isolates from 24 pig farms in North Carolina collected between 1997 and 2000.

Methods: A total of 1314 isolates of 30 serotypes from pig faecal samples were collected and analysed over a 3 year period. The isolates were characterized using antimicrobial susceptibility testing, phage typing, PCR and DNA sequencing for class 1 integrons.

Results: A high frequency of resistance to antimicrobial agents including tetracycline (85%), ampicillin (47%), co-amoxiclav (23%) and chloramphenicol (21%) was detected. Two multidrug resistance patterns were common in Typhimurium (including variant Copenhagen): isolates with co-amoxiclav, ampicillin, chloramphenicol, streptomycin, sulfamethoxazole and tetracycline (R-type AxACSSuT) [36%] and isolates with ampicillin, kanamycin, streptomycin, sulfamethoxazole and tetracycline (R-type AKSSuT) [45%] resistance patterns. Definitive Type 104 (DT104) was the most common (34%) among eight phage types identified. AKSSuT was found among non-DT104 phage types, particularly DT21 and DT193. Class 1 integrons were detected among various serotypes including Typhimurium, Derby, Muenchen, Worthington, Bere and Muenster. aadA was the most common resistance gene insert, and the oxa30 beta-lactamase resistance gene was also identified among serovar Muenchen.

Conclusions: In this study, two most important multidrug resistance patterns (AxACSSuT and AKSSuT) and phage types of public health significance (DT104 and DT193) constituted two-thirds of the serotype Typhimurium isolates. The findings imply that pigs raised in the commercial production system may pose a risk in serving as reservoirs of resistant Salmonella.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Bacteriophage Typing
  • Drug Resistance, Bacterial
  • Feces / microbiology
  • Integrons / genetics*
  • Microbial Sensitivity Tests
  • Reverse Transcriptase Polymerase Chain Reaction
  • Salmonella / drug effects*
  • Salmonella / virology*
  • Salmonella Phages*
  • Swine / microbiology*
  • Swine Diseases* / epidemiology*
  • Swine Diseases* / microbiology*