Organ-selective induction of cytochrome P-450-dependent activities by indole-3-carbinol-derived products: influence on covalent binding of benzo[a]pyrene to hepatic and pulmonary DNA in the rat

Chem Biol Interact. 1992 Aug 28;83(3):235-47. doi: 10.1016/0009-2797(92)90100-y.


Indole-3-carbinol (I3C) is a dietary modulator of carcinogenesis that can reduce the level of carcinogen binding to DNA. I3C-derived products are potent inducers of certain cytochrome P-450(CYP)-dependent enzyme activities. To investigate whether the protective effects of I3C against carcinogen damage to DNA are associated with increased activities of CYP1A1 enzymes, we examined the relationship of I3C-mediated organ-specific CYP enzyme induction with total levels of benzo[a]pyrene (BP) binding to hepatic and pulmonary DNA of rats. Oral intubation (PO) of I3C (500 mumol/kg body wt.) in 10% DMSO in corn oil produced after 20 h, increases in ethoxyresorufin O-deethylase (EROD) activities (associated with CYP1A1 isozyme) of 700-fold, 245-fold and 36-fold in small intestine, lungs and liver, respectively, compared with activities in untreated controls. Hepatic aryl hydrocarbon hydroxylase (AHH) activity was increased 4-fold under these conditions. Pentoxyresorufin O-depentylase (PROD) activity (associated with CYP2B isoenzyme) was increased 6-fold in the liver but was unaffected in lung and small intestine. Intraperitoneal injection (IP) of I3C (500 mumol/kg body wt.) produced no significant change in EROD or PROD activities in lung, liver, or small intestine. PO administration of the acid reaction mixture (RXM) of I3C increased hepatic AHH activity (5-fold) and EROD activities in small intestine (650-fold), lung (100-fold) and liver (18-fold). IP administration of RXM (equivalent to 500 mumol I3C/kg body wt.) significantly increased only EROD activity in lung and liver, but did not affect EROD activity in small intestine, AHH activity in liver, or PROD activity in any of the organs examined. Twenty hours after inducer treatment, half of the rats were treated PO with 0.2 mumol [3H]BP in corn oil. Analysis of tissues 5 h after BP administration indicated that compared with untreated controls, administration of I3C and RXM by either route reduced by 30-50% the level of BP binding to hepatic DNA, an effect that was not correlated to CYP1A1 enzyme induction in any of the organs examined. However, PO administration of I3C and RXM produced a 50-70% decrease in carcinogen binding to pulmonary DNA, while IP administration of inducers had no effect on DNA binding in this organ. These results with the lung are consistent with an increased presystemic clearance of BP in the intestine and are discussed in terms of the role of induction of intestinal CYP1A1 activity in the decreased lymphatic and venous transport of unmetabolized BP to the lung.

MeSH terms

  • Administration, Oral
  • Animals
  • Aryl Hydrocarbon Hydroxylases / biosynthesis
  • Benzo(a)pyrene / metabolism*
  • Cytochrome P-450 CYP1A1
  • Cytochrome P-450 CYP2B1
  • Cytochrome P-450 Enzyme System / biosynthesis*
  • DNA / isolation & purification
  • DNA / metabolism*
  • Enzyme Induction / drug effects
  • Indoles / administration & dosage
  • Indoles / pharmacology*
  • Injections, Intraperitoneal
  • Intestine, Small / drug effects
  • Intestine, Small / enzymology
  • Liver / drug effects*
  • Liver / enzymology
  • Lung / drug effects*
  • Lung / enzymology
  • Male
  • Oxidoreductases / biosynthesis
  • Rats
  • Rats, Inbred Strains


  • Indoles
  • Benzo(a)pyrene
  • DNA
  • Cytochrome P-450 Enzyme System
  • indole-3-carbinol
  • Oxidoreductases
  • Aryl Hydrocarbon Hydroxylases
  • Cytochrome P-450 CYP1A1
  • Cytochrome P-450 CYP2B1