Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Jun;53(6):1445-51.
doi: 10.2337/diabetes.53.6.1445.

Role of adipocyte-derived factors in enhancing insulin signaling in skeletal muscle and white adipose tissue of mice lacking Acyl CoA:diacylglycerol acyltransferase 1

Affiliations

Role of adipocyte-derived factors in enhancing insulin signaling in skeletal muscle and white adipose tissue of mice lacking Acyl CoA:diacylglycerol acyltransferase 1

Hubert C Chen et al. Diabetes. 2004 Jun.

Abstract

Mice that lack acyl CoA:diacylglycerol acyltransferase 1 (DGAT1), a key enzyme in mammalian triglyceride synthesis, have decreased adiposity and increased insulin sensitivity. Here we show that insulin-stimulated glucose transport is increased in the skeletal muscle and white adipose tissue (WAT) of chow-fed DGAT1-deficient mice. This increase in glucose transport correlated with enhanced insulin-stimulated activities of phosphatidylinositol 3-kinase, protein kinase B (or Akt), and protein kinase Clambda (PKC-lambda), three key molecules in the insulin-signaling pathway, and was associated with decreased levels of serine-phosphorylated insulin receptor substrate 1 (IRS-1), a molecule implicated in insulin resistance. Similar findings in insulin signaling were also observed in DGAT1-deficient mice fed a high-fat diet. Interestingly, the increased PKC-lambda activity and decreased serine phosphorylation of IRS-1 were observed in chow-fed wild-type mice transplanted with DGAT1-deficient WAT, consistent with our previous finding that transplantation of DGAT1-deficient WAT enhances glucose disposal in wild-type recipient mice. Our findings demonstrate that DGAT1 deficiency enhances insulin signaling in the skeletal muscle and WAT, in part through altered expression of adipocyte-derived factors that modulate insulin signaling in peripheral tissues.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms