Multiple lines of evidence have revealed a key role for inhibitory Fc gamma receptors class IIb (FcgammaRIIb) as negative modulators of innate and adaptive immune responses. Acquired and genetic factors regulate the expression of FcgammaRIIb receptors and modify their inhibitory potential. Recent advances have highlighted the importance of FcgammaRIIb receptors in influencing the development of cancer and autoimmunity. The association of increased FcgammaRIIb expression with tumor development is believed to operate at effector cell level resulting in inhibition of antitumor cytotoxicity. In autoimmune diseases, FcgammaRIIb receptors play a major role in controlling the amplitude of antibody- and immune complex-mediated reactions. Generally, FcgammaRIIb deficiency is associated with increased susceptibility and severity to organ-specific and systemic autoimmunity. This article discusses the proposed mechanisms for FcgammaRIIb deregulation associated with malignant and autoimmune pathology in animal models and human diseases.