Skip to main page content
Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
, 7 (1-2), 18-29

Dual Flagellar Systems Enable Motility Under Different Circumstances


Dual Flagellar Systems Enable Motility Under Different Circumstances

Linda L McCarter. J Mol Microbiol Biotechnol.


Flagella are extremely effective organelles of locomotion used by a variety of bacteria and archaea. Some bacteria, including Aeromonas, Azospirillum, Rhodospirillum, and Vibrio species, possess dual flagellar systems that are suited for movement under different circumstances. Swimming in liquid is promoted by a single polar flagellum. Swarming over surfaces or in viscous environments is enabled by the production of numerous peritrichous, or lateral, flagella. The polar flagellum is produced continuously, while the lateral flagella are produced under conditions that disable polar flagellar function. Thus at times, two types of flagellar organelles are assembled simultaneously. This review focuses on the polar and lateral flagellar systems of Vibrio parahaemolyticus. Approximately 50 polar and 40 lateral flagellar genes have been identified encoding distinct structural, motor, export/assembly, and regulatory elements. The sodium motive force drives polar flagellar rotation, and the proton motive force powers lateral translocation. Polar genes are found exclusively on the large chromosome, and lateral genes reside entirely on the small chromosome of the organism. The timing of gene expression corresponds to the temporal demand for components during assembly of the organelle: RpoN and lateral- and polar-specific sigma(54)-dependent transcription factors control early/intermediate gene transcription; lateral- and polar-specific sigma(28) factors direct late flagellar gene expression. Although a different gene set encodes each flagellar system, the constituents of a central navigation system (i.e., chemotaxis signal transduction) are shared.

Similar articles

See all similar articles

Cited by 86 PubMed Central articles

See all "Cited by" articles

Publication types

MeSH terms


LinkOut - more resources