Modelling blood-brain barrier partitioning using Bayesian neural nets
- PMID: 15182809
- DOI: 10.1016/j.jmgm.2004.03.010
Modelling blood-brain barrier partitioning using Bayesian neural nets
Abstract
We have employed three families of molecular molecular descriptors, together with Bayesian regularized neural nets, to model the partitioning of a diverse range of drugs and other small molecules across the blood-brain barrier (BBB). The relative efficacy of each descriptors class is compared, and the advantages of flexible, parsimonious, model free mapping methods, like Bayesian neural nets, illustrated. The relative importance of the molecular descriptors for the most predictive BBB model were determined by use of automatic relevance determination (ARD), and compared with the important descriptors from other literature models of BBB partitioning.
Similar articles
-
Predicting penetration across the blood-brain barrier from simple descriptors and fragmentation schemes.J Chem Inf Model. 2007 Jan-Feb;47(1):170-5. doi: 10.1021/ci600312d. J Chem Inf Model. 2007. PMID: 17238262
-
Investigating the utility of momentum-space descriptors for predicting blood-brain barrier penetration.J Mol Graph Model. 2007 Oct;26(3):607-12. doi: 10.1016/j.jmgm.2007.01.002. Epub 2007 Jan 14. J Mol Graph Model. 2007. PMID: 17300970
-
In silico ADME modelling: prediction models for blood-brain barrier permeation using a systematic variable selection method.Bioorg Med Chem. 2005 Apr 15;13(8):3017-28. doi: 10.1016/j.bmc.2005.01.061. Bioorg Med Chem. 2005. PMID: 15781411
-
Blood-brain barrier genomics and the use of endogenous transporters to cause drug penetration into the brain.Curr Opin Drug Discov Devel. 2003 Sep;6(5):683-91. Curr Opin Drug Discov Devel. 2003. PMID: 14579518 Review.
-
Current in vitro and in silico models of blood-brain barrier penetration: a practical view.Curr Opin Drug Discov Devel. 2009 Jan;12(1):115-24. Curr Opin Drug Discov Devel. 2009. PMID: 19152220 Review.
Cited by
-
Combined Micellar Liquid Chromatography Technique and QSARs Modeling in Predicting the Blood-Brain Barrier Permeation of Heterocyclic Drug-like Compounds.Int J Mol Sci. 2022 Dec 14;23(24):15887. doi: 10.3390/ijms232415887. Int J Mol Sci. 2022. PMID: 36555527 Free PMC article.
-
Development of QSAR models to predict blood-brain barrier permeability.Front Pharmacol. 2022 Oct 20;13:1040838. doi: 10.3389/fphar.2022.1040838. eCollection 2022. Front Pharmacol. 2022. PMID: 36339562 Free PMC article.
-
Improved Classification of Blood-Brain-Barrier Drugs Using Deep Learning.Sci Rep. 2019 Jun 19;9(1):8802. doi: 10.1038/s41598-019-44773-4. Sci Rep. 2019. PMID: 31217424 Free PMC article.
-
Predict drug permeability to blood-brain-barrier from clinical phenotypes: drug side effects and drug indications.Bioinformatics. 2017 Mar 15;33(6):901-908. doi: 10.1093/bioinformatics/btw713. Bioinformatics. 2017. PMID: 27993785 Free PMC article.
-
Predicting expected progeny difference for marbling score in Angus cattle using artificial neural networks and Bayesian regression models.Genet Sel Evol. 2013 Sep 11;45(1):34. doi: 10.1186/1297-9686-45-34. Genet Sel Evol. 2013. PMID: 24024641 Free PMC article.
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
