Membrane and capillary blood components of diffusion capacity of the lung for carbon monoxide in pulmonary sarcoidosis: relation to exercise gas exchange

Chest. 2004 Jun;125(6):2061-8. doi: 10.1378/chest.125.6.2061.


Background: Resting pulmonary diffusing capacity of the lung for carbon monoxide (DLCO) is known to be the best predictor of arterial desaturation during exercise in patients with sarcoidosis. However, the relative contribution of each of the two components of DLCO-alveolar membrane diffusing capacity (Dm) and pulmonary capillary blood volume (Vc)-remains unclear.

Study objectives: To evaluate which component is responsible for the decrease of resting DLCO in patients with sarcoidosis, and to determine which resting pulmonary function test, including Dm and Vc, is the best predictor of gas exchange abnormalities during submaximal exercise.

Design: Prospective analysis of patients referred to our department of respiratory medicine.

Patients: Twenty four patients with pulmonary sarcoidosis were separated into two groups according to chest radiographic findings: group 1, stages 2 and 3 (n = 15); group 2, stage 4 (n = 9). All the patients completed pulmonary function tests (flows, volumes, single-breath DLCO, transfer coefficient [Ka], Dm, Vc) and submaximal exercise (two steady-state levels of mild and moderate exercise corresponding respectively to a target oxygen consumption of approximately 10 to 15 mL/min/kg).

Results: DLCO was reduced in the two groups (group 1, 63 +/- 16% of predicted; group 2, 64 +/- 16% of predicted). Dm was severely decreased (group 1, 58 +/- 24% of predicted; group 2, 51 +/- 15% of predicted), whereas Vc was unchanged or only mildly decreased (group 1, 81 +/- 18% of predicted; group 2, 85 +/- 28% of predicted). Whatever the group of patients and the exercise level, Dm and DLCO were the strongest predictors (p < 0.001) of gas exchange abnormalities. Ka or volumes were weak predictors, and Vc or flows were not related with exercise gas exchange.

Conclusions: This study demonstrates that a decrease in Dm mostly accounts for resting DLCO reduction, and that Dm as well as DLCO are highly predictive of gas exchange abnormalities at exercise in patients with sarcoidosis.

Publication types

  • Comparative Study

MeSH terms

  • Adult
  • Capillaries
  • Carbon Monoxide / analysis
  • Carbon Monoxide / blood*
  • Exercise Test
  • Female
  • Humans
  • Male
  • Membranes
  • Middle Aged
  • Multivariate Analysis
  • Predictive Value of Tests
  • Probability
  • Prognosis
  • Prospective Studies
  • Pulmonary Diffusing Capacity / physiology*
  • Pulmonary Gas Exchange / physiology*
  • Respiratory Function Tests
  • Rest
  • Sampling Studies
  • Sarcoidosis, Pulmonary / diagnosis*
  • Sarcoidosis, Pulmonary / metabolism
  • Sensitivity and Specificity
  • Severity of Illness Index


  • Carbon Monoxide