Modification of GABA-mediated inhibition by various injectable anesthetics

Anesthesiology. 1992 Sep;77(3):488-99. doi: 10.1097/00000542-199209000-00014.

Abstract

Increasing doses of the injectable anesthetics etomidate, Saffan, thiopental, ketamine, and xylazine and the vehicles saline and propylene glycol were administered to urethane-anesthetized rats. Their effects in vivo on perforant pathway-evoked field excitatory post-synaptic potentials and population spikes in the hippocampal dentate gyrus were determined. The primary purpose was to ascertain whether these compounds affect hippocampal excitability in a manner consistent with their proposed mechanisms of action. Compared with their respective vehicles, thiopental, etomidate, and xylazine reduced the amplitude of population spikes to single perforant pathway stimulation by 20-30% at the highest doses tested. Xylazine also increased the latency to onset of the population spike. No other effects were observed. Using paired pulse paradigms, it was determined that etomidate produced a dramatic, prolonged reduction in granule cell excitability at interpulse intervals of 10-100 ms. The magnitude of the effect was dose related and was reversible with the discontinuance of administration of the drug. Similar changes occurred with Saffan (althesin) and thiopental. Ketamine produced a small but significant depression in granule cell excitability during intervals of 10-200 ms. Xylazine had no effect. These data corroborate the importance of a prolongation of gamma-aminobutyric acid A-mediated inhibition to the mechanism of actions of etomidate, thiopental, and Saffan at relevant exposure concentrations in vivo.

Publication types

  • Comparative Study

MeSH terms

  • Anesthetics / administration & dosage
  • Anesthetics / pharmacology*
  • Animals
  • Brain / drug effects*
  • Drug Interactions
  • Evoked Potentials / drug effects
  • GABA Antagonists*
  • Injections, Intraperitoneal
  • Male
  • Propylene Glycol
  • Propylene Glycols / pharmacology
  • Rats
  • Rats, Inbred Strains

Substances

  • Anesthetics
  • GABA Antagonists
  • Propylene Glycols
  • Propylene Glycol